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Abstract: In shared autonomous systems, humans and agents cooperate to complete tasks. Since reinforcement learning enables
agents to obtain good policies through trial and error without knowing the dynamic model of the environment, it has been well
applied in shared autonomous systems. After inferring the target from human inputs, agents trained by RL can accurately act
accordingly. However, existing methods of this kind have big problems: the training of reinforcement learning algorithms require
lots of exploration, which is time-consuming, lack of security guarantee and likely to cause great losses in the training process.
Moreover, most of shared control methods are human-oriented, and do not consider the situation that humans may make wrong
actions. In view of the above problems, this paper proposes human-in-the-loop reinforcement learning with policy constraints. In
the training process, human prior knowledge is used to constrain the exploration of agents to achieve fast and efficient learning.
In the process of testing we incorporate policy constraints in the arbitration to avoid serious consequences caused by human
mistakes.
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1 Introduction

Artificial Intelligence (AI) has come a long way in the past

few decades. Among numerous solutions to sequential de-

cision problems, Reinforcement Learning (RL) stands out.

RL agents can learn through continuous interaction with the

environment to obtain data, which has great advantages in

solving model-free problems. Nowadays, RL has been well

used in many fields, such as Game [1], Finance [2], Medicine

[3]and so on. Google recently managed to control plasma

autonomously in a fusion device using RL [4].

We focus on shared autonomous systems, in which RL

plays a good role. In fact, many problems are intractable for

humans or intelligent agents alone [9]. For example, it is

difficult for human beings to realize the motion and attitude

control of high-degree of freedom objects such as multi-arm

robot and quadrotor aircraft, but it is very simple for ma-

chines. On the contrary, the problem of selecting targets is

too difficult for machines. Shared autonomous systems aim

to combine human actions and agent’s policies to accomplish

related tasks or improve policy performance [5–7]. Shared

autonomy, where actions are performed after interactions be-

tween humans and agents, has been proven to achieve better

performance than a single human or agent and is more prac-

tical in the application of real scenes [10]. Because of the

advantages of RL, the shared autonomous system trained by

RL can solve the sequential decision problems without envi-

ronment model, which is a great improvement.

However, even though RL helps the shared autonomous

systems solve some sequential decision problems and makes

a great breakthrough in this field, it is not feasible to rely only

on RL algorithms for many realistic complex tasks [8]. It’s

important to note that in RL algorithms, agents need a lot of

interaction data to get a good strategy because of the high-
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dimensional nature of the action space and the state space.

However, there will be huge costs and security threats due

to lots of exploration in the real environment, which prevent

the development of RL in the real world. For example, traffic

accidents and vehicle damage are prone to occur in the train-

ing process of autonomous vehicles. Moreover, it’ll tend to

occur overfitting for RL agents which means once the ac-

tual environment changes greatly, the original strategy will

become ineffective.

In order to solve these problems, some researchers pro-

pose to use human prior knowledge to accelerate the training

process, such as introducing expert strategies to avoid dan-

gerous actions in the exploration process [24], setting spe-

cific constraint functions [12], and letting agents learn tar-

get strategies through human demonstrations [13]. Siddharth

proposed human-in-the-loop RL [14], which combined the

advantages of RL in dealing with model-free sequential de-

cision problems with human’s prior knowledge. But in this

method, on the one hand, human participation in the training

of RL agents only depends on the setting of rewards, which

can accelerate the training, but ignores the fatal defect of RL:

the lack of safety assurance in the training process. Because

agents need to explore, they are prone to make dangerous

behaviors and cause great losses. On the other hand, the

algorithm is human-centered in the execution process, but

ignores situations in which human may make bad decisions,

such as the wrong steering, due to fatigue driving in the as-

sisted autopilot system. However, these methods mentioned

above only help agents learn strategies, which are not neces-

sarily optimal. In fact, these methods will obtain suboptimal

solutions due to the bias of human prior knowledge.

Inspired by Tong’s proposal of Constraint Sampling Rein-

forcement Learning (CSRL) [15], we propose a human-in-

the-loop RL method under the policy constraints(HRLPC)

to solve the problems of the above method. In view of the

lack of security guarantee of RL algorithm and the problem
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Fig. 1: The framework. (1) In the training process, human set policy constraints on RL based agent, and the agent will receive

additional reward from human feedback in the interactions with the environment. (2) In the testing process, the agent deduces

the target according to the output of the human, and obtains the final action through the arbitration mechanism under the

restriction of the policy.

that it is easy to explore the defects of suboptimal solutions,

different policy restrictions are artificially added to multiple

agents, and then the policy elimination is constantly carried

out in the training process. Finally, agents with optimal pol-

icy solutions are obtained while ensuring security. Unlike

CSRL, we have added different types of policy constraints to

the training and execution of human-machine systems. The

agent’s RL algorithm can converge to the optimal solution

quickly in the training process, and at the same time, the

monitoring mechanism is introduced in the execution pro-

cess to limit the irrational decisions made by human beings,

so as to realize efficient and safe human-machine system

decision-making.

The rest of this paper is organized as follows. Section II

introduces some related works. Section III elaborates our ap-

proach. Section VI describes our experimental process and

analysis of experimental results. We conclude in section V.

2 Related Work

2.1 Human-in-the-loop RL
Unlike shared autonomy [10], which integrates user in-

put and machine output to enable human-machine systems

to successfully complete tasks during test time. Human-

in-the-loop RL incorporates prior knowledge such as hu-

man feedback into the training loop without relying on the

input of independent users [18]. All these RL algorithms

are based on the human-in-the-loop framework and generate

many methods from different perspectives such as the de-

gree and way of human participation. In the training process,

agents can learn from human demonstration, learn reward

functions through Inverse Reinforcement Learning [16], or

accelerate training and restrain agents’ exploration through

human feedback [17]. Michael proposed HG-Dagger(a vari-

ant of DAgger) [19] that guarantees the security of agent ex-

ploration through expert intervention. The essence of the

above algorithms are to positively guide agents exploration

based on human prior knowledge. The algorithm proposed

by us is also based on the above human-in-the-loop frame-

work in training time, but the biggest difference from other

algorithms is the way of utilizing human prior knowledge.

2.2 Safe RL
Many people are concerned about the application of RL

because of the high cost and security risks brought by explo-

ration in the training process of RL algorithm in real scenes.

Safety RL [20] can be defined as a process of policy learn-

ing that maximizes return expectation under the premise of

ensuring reasonable system performance and meeting safety

constraints during training and testing. Recently more and

more people have been studying safe RL, such as constrained

optimization methods [29], or using an estimate to predict

cost [22]. Saunders [23] proposes a decider trained by imita-

tion learning to decide when to intervene with agents who

engage in dangerous behaviors. Zhenghao [24] proposes

EGPO that guarantees exploration security, requiring only

the guardian without structural assumptions. Different from

the above methods, Our method considers the security of the

system both in training time and testing time.

2.3 Constrained RL
Much previous work considered combinations of single or

multiple constraints, such as rewards, dynamic transfer mod-

els and so on. Previously Altman [25] has studied constraint

RL under the assumption that all the model information is

known, such as transition probability, reward function, etc.

Later, many scholars began to study the combination of var-

ious constraints, some of which can be unknown [26–28].

Recently constrained RL develops a lot of variants, such as

algorithms based on Actor-Critic framework [28] or policy

search [29]. The constraints we consider are consistent with

Tong’s weak constraint [15], which is to transform human

prior knowledge into programmable formulas that can guide

agents to reduce unnecessary and erroneous exploration.

3 Method

For shared autonomy systems, tasks cannot be completed

by humans or machines alone. With human input, ma-

chines are no longer aimless and can accomplish high-
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dimensional control tasks. For these human-machine sys-

tems, we propose human-in-the-loop RL with policy con-

straints(HRLPC), which are applied in two parts: the train-

ing process and the testing process. The framework of the

whole method is shown in Fig. 1.

We incorporate prior knowledge into the training process

and impose different policy constraints on different agents.

During training, agents with inappropriate policy restrictions

are constantly eliminated and finally the remaining agent can

obtain the best policy. During the test, the best agent and hu-

man make decisions together. Through the arbitration mech-

anism with security guarantee, the final behavior of the sys-

tem is optimal and safe.

3.1 The Training Process
We choose a group of agents to learn based on our al-

gorithm, and all agents share the experience pool. The al-

gorithm we proposed combine Rainbow [30] with human

prior knowledge which consists of reward feedback and pol-

icy constraints. During training we assume that the model

is unknown and that the purpose of agents is fixed because

there is no human input during training.

As a general characteristic of shared autonomous systems,

the reward equation includes human feedback in addition to

rewards for performing tasks.

R = Rtask(s, a, s
′) +Rfeedback(s, a, s

′) (1)

Human feedback can help agents quickly find targets in

training. Once agents succeed, we can stop providing feed-

back, which greatly reduces the training burden of humans.

We make different sets of policy constraints for each

agent, which can be empty (no constraint). C(s) represents
the mapping from states to allowed actions, and letCk(s) de-
note the policy constraint of agent k. We divided the training
process into three steps: (a) Before the beginning of each
episode, select an agent for training. (b) Relevant agents
share the episode’s data and update model parameters. (c)
Eliminate agents whose policy restrictions meet certain con-

ditions. Each episode repeats the above three steps.

We now explain the selection rule of agent in the first step

in detail. We denote Φ as the set of agents and the past av-
erage return of agent k as μ̂k. The upper confidence bandit

(UCB) method is used to choose agent, as shown in equation

(2). We assume the confidence function B(h, n) is of the

form
z(h)
nη . The detail of confidence function is discussed in

section 4.

k∗ = argmax
k∈Φ

(μ̂k +B(h, n)) (2)

As Siddharth [14] pointed out, one-step update will affect

human control due to the delay of task interface, so we up-

dated model parameters after the end of each episode. After

updating agents’ parameters, two conditions should be met

to determine the elimination of an agent k: (a) the model pa-
rameters of agent k are stable. (b) There is at least one agent
that has better performance and a looser policy constraint

than agent k. For RL algorithms based on Q value function,
we can intuitively judge whether the value function network

is stable through δkτ , the average of the approximate temporal

difference error under the observed trajectory τ . Formally,

δkτ =
∑
τ

((rt + max
a′∈Ck

Qk
t (s

′, a′))−Qk
t (s, a)) (3)

Besides, a looser policy constraint than agent k means that
other actions can be performed in addition to those allowed

by agent k. It’s intuitive because fewer restrictions allow
agents to explore more without sacrificing performance. As

Tong proved, when the base learning method converges, this

constraint sampling approach is guaranteed to converge even

though it appears that the return of each arm of UCB is not

subject to a static distribution.

Algorithm 1: Human-in-the-loop RL with Policy
Constraint(HRLPC)

Initialize μ̂k, B(h, n), Tn, Tl ;

Initialize agents with different policy constraint ;

Initialize agents’ parameters and hyperparameters ;

Initialize the changeDk = [ ], ∀k ∈ A ;
for Episode i=1,2,... do
Select agent k to explore by using equation (2) ;
Generate trajectory τi ;

Rtask =
∑len(τi)

t=1 ;

Ri = Rtask +Rfeedback ;

nk = nk + 1 ;

μ̂k = (nk−1)μ̂k+Ri
nk

;

Update the relevant agent ;

Calculate δi and Pk = [Dk, δi] ;
if ∀n ∈ {nk − Tn ≤ 0} andDk(n) ≤ Tl then

Eliminate agent k
end

end

3.2 The Testing Process
Human Input Unlike the training process where the tar-

get is fixed, in the testing process machine needs to infer the

new target based on human input. By concatenating agent’s

orginal state vector and human action vector, we can trans-

mit human intentions to the agent. Obviously, if we know

enough model information, we can also directly infer hu-

man’s purpose from human’s historical actions and concate-

nate agent’s original state vector and target position vector.

s∗t =
[
st
ah

]
(4)

Shared Control We need an arbitration to determine the
final action based on the input of the machine and the human,

and it is obvious that the machine can choose the action that

is closest to human input while ensuring that the action is not

far worse than the best action. But obviously this method is

easy to cause serious costs when human make mistakes at

a certain moment. So we introduce a protection mechanism

on the basis of the original arbitration, when the human be-

havior will lead to serious consequences, the system’s action

is dominated by the machine. The final output policy of the

shared autonomous system is defined as π(s). Formally,

π(s) =

{
arg max

a∈Ωα

ρ(a, ah), ah ∈ Ωβ

a∗, otherwise
(5)
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where the function ρ calculates the similarity between hu-
man action and agent’s action, a′ = argmin

a∈A
Q(s, a) and

a∗ = argmax
a∈A

Q(s, a). We denote two constrained policy

spaces as Ωα and Ωβ respectively. Intuitively, if the hu-

man action is reasonable, i.e. ah ∈ Ωβ , agents will choose

the most human-like action from Ωα. On the contrary, if

the human input action is wrong, the human input will be

ignored. With the policy constraints, the security of man-

machine system is guaranteed.{
Ωα = {a|Q(s, a)−Q(s, a′) ≥ α(Q(s, a∗)−Q(s, a′))}
Ωβ = {a|Q(s, a)−Q(s, a′) ≥ β(Q(s, a∗)−Q(s, a′))}

(6)

Significantly, since the Q value function may be negative,

we use the difference between the Q(s, a) and its minimum
value to measure the performance of the action a. The hyper-
parameters Ωα ∈ [0, 1] and Ωβ ∈ [0, 1] control the tolerance
of agents to human suboptimal behavior and abnormal input

respectively.

4 Experiments

We use the Lunar Lander game from OpenAI Gym as sim-

ulation experiment platform. This game is used to simu-

late the landing of aircraft on the moon, its goal is to land

safely at a certain target point. The motion space of the air-

craft is four-dimensional and discrete, corresponding to dif-

ferent actuators. The original state space is an 8-dimensional

vector that contains information about the lander’s position,

speed, and indicators of whether or not it has reached the

ground. We modified the game setting to randomly gener-

ate the target landing site, which the lander doesn’t know,

on the ground below at the beginning of each episode. The

machine needs human input to predict where to land because

the target landing site is not available to the machine and ap-

pears randomly in each episode, but human know the target

landing site between the two flags. So the final state space

will be 9-dimensional, with additional information about the

location of the destination.

Fig. 2: the LunarLander scene.

Setting We generated 10 policies with different perfor-
mance levels for different human pilots. The final policy

constraint set is the combination of single or multiple hu-

man flight strategies. Of course, the policy constraint set can

be empty, which means there is no restriction. Rainbow is

the basic RL algorithm of agents and the Q value function is

a neural network with two hidden layers of 128 units each.

In the two parts of the reward function, the setting of Rtask

means that every dangerous action of the lander will be pe-

nalized. Rfeedback appears at the end of the episode. If the

lander successfully arrives at the destination safely, human

will give a large positive reward; otherwise, a large negative

reward will be given. The learning rate of this experiment

is 1e-4, the update interval of target network parameters is

4 time steps, and the training batch size is 64. The confi-

dence bound B(h, n) = c

√
log(t)

s1/2
, and we set Tn = 40 and

Tl = 0.0125.

4.1 The Training Phase
Results In order to reduce the training burden on human,

the lander will be informed of the target location during

training, but it needs to deduce the destination information

according to human input in the testing phase. As shown in

Fig. 3, all the rewards we plot are with 95% confidence in-
tervals. Compared with Rainbow, our method improve the

convergence rate and the stability of the returns.

Fig. 3: Returns with 95% confidence intervals

Discussion The results are exactly in line with our expec-
tations. With policy constraints, agents can quickly find the

optimal behavior and avoid costs caused by explorations in

the training process. It is obvious that if there is a good pol-

icy constraint, agents will quickly learn the optimal policy.

However, experimental results show that the final reward ob-

tained by using our method is not much higher than other

methods. Because in the Lunar Lander, which has a low di-

mensional action space, the exploration is not difficult for

agents and the difference between the suboptimal solution

and the optimal solution is small. Even if our method has no

great advantage in the return of the episode, agents can still

explore more efficiently and steadily with policy constraints.

4.2 The Testing Phase
Intuitively, the environment becomes unstable due to the

random distribution of destinations, and it should be diffi-

cult for agents to obtain stable strategies based on the single

agent RL methods. However, the training results show that

stable strategies can still be obtained by using Rainbow if

we have encoded destination information into the state vec-

tor. But in shared autonomous, it’s difficult for agents to

understand the target. So we make agents no longer have

extra information and keep human in the loop of testing. In

the testing process, we invited 12 volunteers(5 women and

7 men) to participate. In order to avoid the result of the ex-
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(a) Rainbow (b) HRLPC (c) Rainbow (d) HRLPC

(e) Tests without human (f) Tests with human (g) Tests without human (h) Tests wiht human

Fig. 4: (a-d): In the top row, we plot the scatter plots of returns and steps of agents for 1000 episodes, where agents were

tested without human participation since they were told the target for each episode. (e-h): On the bottom row, we plot the box

plots of agents’ win rate and average steps in the testing process both with and without human participation.

periment not being fair because someone did not participate

seriously, we offered a bonus for each participant, with an

additional bonus for the person with the highest success rate.

ResultsAs Fig. 4 shows, our approach(HRLPC) has a sig-
nificant lead over Rainbow. In the scatter plots, HRLPC has

a lower crash rate but a higher average elapsed time, whereas

Rainbow had a lower average elapsed time, regardless of win

or loss, but a higher crash rate. As we can see from the

box charts, when considering the more realistic shared au-

tonomy scenario, where the agent cannot acquire the target

on their own, human participation does increase HRLPC’s

win rate but Rainbow’s win rate drops significantly. At

the same time, human involvement reduced Rainbow’s aver-

age elapsed time but increased the average steps of HRLPC

slightly.

Discussion Although the training results shows that our
method is not much different from Rainbow’s ultimate re-

turns, and it just has an advantage in convergence speed.

Actual the testing results also shows that Rainbow’s success

rate is only slightly worse than our approach when agents

know the target in advance. Because the action space is only

4-dimensional, the exploration scope of agent is not partic-

ularly large, and the optimal solution can always be found

eventually after long-term exploration. But this is the biggest

drawback of this approach, the long period of unconstraint

exploration leads to a lot of risky behavior, which is the rea-

son why Rainbow is aggressive in training and testing pro-

cess, with not only a high win rate but also a high crash rate.

It can be easily found from the scatter diagram that agents

without policy constraints either crash or land quickly dur-

ing the test.

When we do not allow the agents to have additional in-

formation, i.e. the target location, it is theoretically possible

that the performance of the entire system will decline. First

of all, because of the high landing speed and freedom of the

aircraft, it is difficult to make it land smoothly with only four

movements. Even if agents trained by the RL algorithm can

assist human, they need to predict the target location based

on human input. Due to the error of the LSTM network it-

self, there is a gap between the predicted target and the ac-

tual target. But actually the results show that HRLPC’s suc-

cess rate actually increased, while Rainbow’s success rate

dropped significantly. In our analysis, the reason is that in

the testing phase the policy constraints of agents still exist,

agents will take the rationality of human input actions into

extra consideration. As long as human don’t always deliver

wrong target location information, the system can complete

the task. Moreover, agents will ignore the input of unsafe

human behavior and make the system act as safely as possi-

ble, which is the reason why human participation increases

the average time of our method.

5 Conclusion

For shared autonomy, the system requires humans and

agents to perform tasks together. We propose human-in-

the-loop reinforcement learning with policy constraints that

leverage human priori knowledge to design human feed-

back rewards and policy constraints. On the one hand, by

constraining agents’ exploration, they can quickly and effi-

ciently learn the optimal strategy and reduce the cost in the

training process. On the other hand, in the testing process,

the influence brought by human dangerous actions is lim-

ited, which ensures the security and stability of system per-

formance in the testing process.Finally, The experimental re-

sults confirm that our method greatly improves the sampling

efficiency and safety in the training process as well as the

stability and success rate in the testing process.

Our method still needs to be improved in the future, such

as improving the accuracy of intention inference, designing

better policy constraints to further improve sampling effi-

ciency and system performance, and designing better arbitra-
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tion mechanism. What is worth further thinking is what kind

of policy constraints can make the best use of human priori

knowledge, which is still an open question to be solved.

References

[1] Zha D, Xie J, Ma W, et al, Douzero: Mastering doudizhu with

self-play deep reinforcement learning, International Confer-
ence on Machine Learning, 2021: 12333-12344.

[2] Liu X Y, Yang H, Chen Q, et al, Finrl: A deep reinforcement

learning library for automated stock trading in quantitative fi-

nance, arXiv preprint arXiv:2011.09607, 2020.

[3] Liao X, Li W, Xu Q, et al, Iteratively-refined interactive 3D

medical image segmentation with multi-agent reinforcement

learning, Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, 2020: 9394-9402.

[4] Degrave J, Felici F, Buchli J, et al, Magnetic control of toka-

mak plasmas through deep reinforcement learning, Nature,
602(7897): 414-419, 2022

[5] Abbink D A, Carlson T, Mulder M, et al, A topology of shared

control systems—finding common ground in diversity, IEEE
Transactions on Human-Machine Systems, 2018, 48(5): 509-
525.

[6] Lin Z, Harrison B, Keech A, et al, Explore, exploit or lis-

ten: Combining human feedback and policy model to speed

up deep reinforcement learning in 3d worlds, arXiv preprint

arXiv:1709.03969, 2017.

[7] Zhang Q, Kang Y, Zhao Y B, et al, Traded Control of Human-

Machine Systems for Sequential Decision-Making Based on

Reinforcement Learning, IEEE Transactions on Artificial In-
telligence, 2021.

[8] Henderson P, Islam R, Bachman P, et al, Deep reinforcement

learning that matters,Proceedings of the AAAI conference on
artificial intelligence, 2018, 32(1).

[9] Goertz R C, Manipulators used for handling radioactive mate-

rials, Human factors in technology, 1963: 425-443.
[10] Javdani S, Srinivasa S S, Bagnell J A, Shared autonomy via

hindsight optimization, Robotics science and systems: online
proceedings, 2015, 2015.

[11] Peng Z, Li Q, Liu C, et al, Safe Driving via Expert Guided

Policy Optimization, Conference on Robot Learning, PMLR,
2022: 1554-1563.

[12] Buchli J, Stulp F, Theodorou E, et al, Learning variable

impedance control, The International Journal of Robotics Re-
search, 2011, 30(7): 820-833.

[13] Wu Y H, Charoenphakdee N, Bao H, et al, Imitation learn-

ing from imperfect demonstration, International Conference
on Machine Learning, PMLR, 2019: 6818-6827.

[14] Reddy S, Dragan A D, Levine S, Shared autonomy via deep

reinforcement learning[J]. arXiv preprint arXiv:1802.01744,

2018.

[15] Mu T, Theocharous G, Arbour D, et al, Constraint Sampling

Reinforcement Learning: Incorporating Expertise For Faster

Learning, arXiv preprint arXiv:2112.15221, 2021.

[16] Ziebart B D, Maas A L, Bagnell J A, et al, Maximum entropy

inverse reinforcement learning, Aaai. 2008, 8: 1433-1438.
[17] Guan L, Verma M, Guo S, et al, Explanation augmented

feedback in human-in-the-loop reinforcement learning, arXiv

preprint arXiv:2006.14804, 2020.

[18] Goecks V G, Human-in-the-loop methods for data-

driven and reinforcement learning systems, arXiv preprint

arXiv:2008.13221, 2020.

[19] KellyM, Sidrane C, Driggs-Campbell K, et al, Hg-dagger: In-

teractive imitation learning with human experts, 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE,
2019: 8077-8083.

[20] Garcıa J, Fernández F, A comprehensive survey on safe re-

inforcement learning, Journal of Machine Learning Research,
2015, 16(1): 1437-1480.

[21] Achiam J, Held D, Tamar A, et al, Constrained policy

optimization, International conference on machine learning,
PMLR, 2017: 22-31.

[22] Srinivasan K, Eysenbach B, Ha S, et al, Learning to be safe:

Deep rl with a safety critic, arXiv preprint arXiv:2010.14603,

2020.

[23] Saunders W, Sastry G, Stuhlmueller A, et al, Trial without

error: Towards safe reinforcement learning via human inter-

vention, arXiv preprint arXiv:1707.05173, 2017.

[24] Peng Z, Li Q, Liu C, et al. Safe Driving via Expert Guided

Policy Optimization, Conference on Robot Learning, PMLR,
2022: 1554-1563.

[25] Altman E, Constrained Markov decision processes: stochas-
tic modeling, Routledge, 1999.

[26] Efroni Y, Mannor S, Pirotta M, Exploration-exploitation in

constrained mdps, arXiv preprint arXiv:2003.02189, 2020.

[27] Zheng L, Ratliff L, Constrained upper confidence reinforce-

ment learning, Learning for Dynamics and Control, PMLR,
2020: 620-629.

[28] Bhatnagar S, Lakshmanan K, An online actor–critic algorithm

with function approximation for constrained markov decision

processes, Journal of Optimization Theory and Applications,
2012, 153(3): 688-708.

[29] Achiam J, Held D, Tamar A, et al, Constrained policy

optimization, International conference on machine learning,
PMLR, 2017: 22-31.

[30] Hessel M, Modayil J, Van Hasselt H, et al, Rainbow: Com-

bining improvements in deep reinforcement learning, Thirty-
second AAAI conference on artificial intelligence, 2018.

7354

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 10,2022 at 06:25:00 UTC from IEEE Xplore.  Restrictions apply. 


